1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
| import os import time import math import argparse import torch import torch.nn as nn import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from pathlib import Path from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error, r2_score import shap import warnings warnings.filterwarnings("ignore")
import sys wkdir = 'E:/src' sys.path.append(f'{wkdir}/modules') from fftKAN import * from effKAN import *
def split_data(feature, target, lookback): data_raw = feature target_raw = target data = [] target = [] for index in range(len(data_raw) - lookback): data.append(data_raw[index: index + lookback]) target.append(target_raw[index: index + lookback]) data = np.array(data) target = np.array(target) test_set_size = int(np.round(0.2 * data.shape[0])) train_set_size = data.shape[0] - test_set_size x_train = data[:train_set_size, :-1, :] y_train = target[:train_set_size, -1, :] x_test = data[train_set_size:, :-1] y_test = target[train_set_size:, -1, :] return [x_train, y_train, x_test, y_test]
class TimeSeriesTransformer_ekan(nn.Module): def __init__(self, input_dim, num_heads, num_layers, num_outputs, hidden_space, dropout_rate = 0.1): super(TimeSeriesTransformer_ekan, self).__init__() self.input_dim = input_dim self.num_heads = num_heads self.num_layers = num_layers self.num_outputs = num_outputs self.hidden_space = hidden_space transformer_layer = nn.TransformerEncoderLayer( d_model=hidden_space, nhead=num_heads, dropout=dropout_rate ) self.transformer_encoder = nn.TransformerEncoder(transformer_layer, num_layers = num_layers) self.e_kan = KAN([hidden_space, 10, num_outputs]) self.transform_layer = nn.Linear(input_dim, hidden_space)
def forward(self, x): x = x.permute(1, 0, 2) x = self.transform_layer(x) x = self.transformer_encoder(x) x = x[-1, :, :] x = self.e_kan(x) return x
def explain_model_with_shap(model, data, background_samples = 50, seq_len = None, input_dim = None): model.eval() data_flattened = data.reshape(data.shape[0], -1) background_data = data_flattened[:background_samples]
def model_wrapper(x): with torch.no_grad(): x_reshaped = torch.FloatTensor(x).reshape(-1, seq_len, input_dim) return model(x_reshaped).numpy().flatten()
explainer = shap.KernelExplainer(model_wrapper, background_data) shap_values = explainer.shap_values(data_flattened) return shap_values, explainer, data_flattened
if __name__ == '__main__': parser = argparse.ArgumentParser() args = parser.parse_args(args = []) args.input_features = ['Open', 'High', 'Low', 'Volume', 'Close'] args.num_heads = 4 args.n_layers = 2 args.output_features = ['Close'] args.hidden_space = 32 args.dropout = 0.2 args.num_epochs = 300 args.vision = True args.window_size = 20 args.model_name = 'Transformer-ekan' args.path = f'{wkdir}/data/rlData.csv' args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data = pd.read_csv(args.path) data = data.sort_values('Date') if args.vision: sns.set_style("darkgrid") plt.figure(figsize = (11, 7)) plt.plot(data[['Close']]) plt.xticks(range(0, data.shape[0], 20), data['Date'].loc[::20], rotation = 45) plt.title("Stock Price", fontsize = 18, fontweight = 'bold') plt.xlabel('Date', fontsize = 18) plt.ylabel('Close Price (USD)', fontsize = 18) plt.show() features = data[args.input_features] scaler = MinMaxScaler(feature_range = (-1, 1)) features_scaled = scaler.fit_transform(features) target_scaler = MinMaxScaler(feature_range = (-1, 1)) target = data[args.output_features] target_scaled = target_scaler.fit_transform(target) x_train, y_train, x_test, y_test = split_data(features_scaled, target_scaled, args.window_size) x_train = torch.from_numpy(x_train).type(torch.Tensor) x_test = torch.from_numpy(x_test).type(torch.Tensor) y_train = torch.from_numpy(y_train).type(torch.Tensor) y_test = torch.from_numpy(y_test).type(torch.Tensor) model = TimeSeriesTransformer_ekan( input_dim = len(args.input_features), num_heads = args.num_heads, num_layers = args.n_layers, num_outputs = len(args.output_features), hidden_space = args.hidden_space, dropout_rate = args.dropout ) criterion = torch.nn.MSELoss() optimiser = torch.optim.Adam(model.parameters(), lr = 0.01) MSE_hist = np.zeros(args.num_epochs) R2_hist = np.zeros(args.num_epochs) start_time = time.time() result = [] for t in range(args.num_epochs): y_train_pred = model(x_train) loss = criterion(y_train_pred, y_train) R2 = r2_score(y_train_pred.detach().numpy(), y_train.detach().numpy()) print("Epoch ", t + 1, "MSE: ", loss.item(), 'R2', R2) MSE_hist[t] = loss.item() if R2 < 0: R2 = 0 R2_hist[t] = R2 optimiser.zero_grad() loss.backward() optimiser.step() y_test_pred = model(x_test) trainScore = mean_squared_error(y_train.detach().numpy(), y_train_pred.detach().numpy()) r2_train = r2_score(y_train.detach().numpy(), y_train_pred.detach().numpy()) print('Train Score: %.2f RMSE' % (trainScore)) print('Train R^2: %.2f' % (r2_train))
testScore = math.sqrt(mean_squared_error(y_test.detach().numpy(), y_test_pred.detach().numpy())) r2_test = r2_score(y_test.detach().numpy(), y_test_pred.detach().numpy()) print('Test Score: %.2f RMSE' % (testScore)) print('Test R^2: %.2f' % (r2_test)) print("Starting SHAP explanation...") shap_values, explainer, test_data_flattened = explain_model_with_shap( model, x_test.numpy(), background_samples = 50, seq_len = x_test.shape[1], input_dim = x_test.shape[2] ) feature_names = args.input_features n_features = len(args.input_features) n_timesteps = x_test.shape[1] shap_values_aggregated = np.zeros((test_data_flattened.shape[0], n_features)) test_data_aggregated = np.zeros((test_data_flattened.shape[0], n_features)) for i in range(n_features): feature_indices = [i + j * n_features for j in range(n_timesteps)] shap_values_aggregated[:, i] = np.mean(shap_values[:, feature_indices], axis = 1) test_data_aggregated[:, i] = np.mean(test_data_flattened[:, feature_indices], axis = 1) plt.figure(figsize = (11, 7)) shap.summary_plot(shap_values_aggregated, test_data_aggregated, feature_names = feature_names, plot_type = "bar")
plt.figure(figsize = (11, 7)) shap.summary_plot(shap_values_aggregated, test_data_aggregated, feature_names = feature_names)
|