1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
| import numpy as np from typing import List, Union, Dict, Tuple, Any, Optional
def _ensure_list(x: Union[float, int, List[float], Tuple[float, ...]]) -> List[float]: """把标量或列表统一为列表(float)。""" if isinstance(x, (float, int)): return [float(x)] return [float(v) for v in x]
def _clamp01(x: float, eps: float = 1e-12) -> float: """把数值限制在 (0,1) 的开区间,避免 log 边界问题。""" return min(1 - eps, max(eps, x))
def r2_cs_max(prevalence: float) -> float: """ 计算在给定结局发生率(或阳性率)π 下,Cox–Snell R² 的最大值。 R²_cs,max = 1 − exp{ 2 [ π ln π + (1 − π) ln (1 − π) ] } """ pi = _clamp01(prevalence) return 1.0 - np.exp(2.0 * (pi * np.log(pi) + (1.0 - pi) * np.log(1.0 - pi)))
def nagelkerke_to_coxsnell(r2_nag: float, prevalence: float) -> float: """ 把 Nagelkerke R² 换算为 Cox–Snell R²:R²_cs = R²_nag × R²_cs,max(π) 其中 π 为结局发生率(或阳性率)。 """ if not (0.0 < r2_nag < 1.0): raise ValueError("R²_nag 必须在 (0, 1) 之间") cs_max = r2_cs_max(prevalence) return float(r2_nag * cs_max)
def lr_chi_square_from_r2_cs(n: int, r2_cs: float) -> float: """ 由 Cox–Snell R² 与样本量 n 得到模型似然比 χ²: χ² = −n · ln(1 − R²_cs) """ r2 = float(r2_cs) if not (0.0 < r2 < 1.0): raise ValueError("R²_cs 必须在 (0, 1) 之间") return -n * np.log1p(-r2)
def shrinkage_from_n_p_r2cs(n: int, p: int, r2_cs: float) -> float: """ 期望收缩因子(校准斜率的期望):S = 1 − p/χ²,χ² 由 R²_cs 换算。 """ chi_sq = lr_chi_square_from_r2_cs(n, r2_cs) return max(0.0, 1.0 - (p / chi_sq)) if chi_sq > 0 else 0.0
def expected_delta_r2_cs(n: int, p: int, r2_cs_apparent: float) -> float: """ 期望的表观与“外部验证/乐观校正”后 Cox–Snell R² 的差值 ΔR²: 利用 χ²_val ≈ χ²_app − p 的近似,有 R²_app = 1 − exp(−χ²/n), R²_val = 1 − exp(−(χ² − p)/n) 推得 ΔR² = (1 − R²_app) · (exp(p/n) − 1) """ r2 = float(r2_cs_apparent) if not (0.0 < r2 < 1.0): raise ValueError("R²_cs 必须在 (0, 1) 之间") return (1.0 - r2) * (np.exp(p / n) - 1.0)
def halfwidth_prevalence_ci(n: int, prevalence: float, z: float = 1.96) -> float: """ 总体风险(结局/阳性率)π 的 95% 置信区间半宽度(正态近似)。 halfwidth = z * sqrt(π(1−π)/n) """ pi = _clamp01(prevalence) return float(z * np.sqrt(pi * (1.0 - pi) / n))
def required_n_for_target_shrinkage(p: int, r2_cs: float, S_target: float = 0.90) -> float: """ 给定 p、R²_cs 与目标收缩因子 S_target,反推所需总样本量 n。 n ≥ [ p / (1 − S_target) ] / [ −ln(1 − R²_cs) ] """ if not (0.0 < r2_cs < 1.0): raise ValueError("R²_cs 必须在 (0, 1) 之间") if not (0.0 < S_target < 1.0): raise ValueError("S_target 必须在 (0, 1) 之间") denom = -np.log1p(-r2_cs) return (p / (1.0 - S_target)) / denom
def required_n_for_delta_r2(p: int, r2_cs: float, delta_target: float = 0.05) -> float: """ 给定 p、R²_cs 与目标 ΔR²(表观−外部/校正,建议 ≤0.05),反推所需 n。 由 ΔR² = (1−R²) [exp(p/n) − 1] ≤ δ 推得: n ≥ p / ln( 1 + δ/(1−R²) ) """ if not (0.0 < r2_cs < 1.0): raise ValueError("R²_cs 必须在 (0, 1) 之间") if not (0.0 < delta_target < 1.0): raise ValueError("delta_target 必须在 (0, 1) 之间") denom = np.log(1.0 + (delta_target / (1.0 - r2_cs))) return p / denom
def required_n_for_prevalence_precision(prevalence: float, delta_target: float = 0.05, z: float = 1.96) -> float: """ 总体风险(结局/阳性率)π 的精度要求:95% CI 半宽度 ≤ δ。 n ≥ z² · π(1−π) / δ² """ pi = _clamp01(prevalence) return (z ** 2) * pi * (1.0 - pi) / (delta_target ** 2)
def calculate_expected_shrinkage_riley2020( n: int, p: int, assumed_r_squared_cs: Union[List[float], float] ) -> Dict[str, str]: """ 按 Riley 等的公式计算期望收缩因子 S(基于 Cox–Snell R²)。 修正点:χ² = −n · ln(1 − R²_cs) """ if n <= 0 or p <= 0: raise ValueError("n 和 p 必须为正整数。") r2_list = _ensure_list(assumed_r_squared_cs)
results: Dict[str, str] = {} for r2 in r2_list: if not (0.0 < r2 < 1.0): results[f"R²_cs = {r2:.2f}"] = "无效 (应在 0~1 之间)" continue model_chi_sq = lr_chi_square_from_r2_cs(n, r2) shrinkage = max(0.0, 1.0 - (p / model_chi_sq)) if model_chi_sq > 0 else 0.0 results[f"R²_cs = {r2:.2f}"] = f"{shrinkage:.3f}" return results
def _classify_shrinkage(s: float) -> str: if s >= 0.90: return "良好 (S ≥ 0.90)" elif s >= 0.85: return "可接受 (0.85 ≤ S < 0.90)" else: return "有风险 (S < 0.85)"
def _normalize_assumed_r2_input( assumed_r2: Union[float, List[float], Dict[str, Union[float, List[float]]]] ) -> Tuple[List[float], List[float], bool]: """ 归一化 R² 输入。 - 若传入标量或列表:两阶段共用同一组 R²,返回 pairwise=True - 若传入字典 {'stage1': ..., 'stage2': ...}:分别使用,返回 pairwise=False """ if isinstance(assumed_r2, dict): r2_stage1 = _ensure_list(assumed_r2.get("stage1", [])) r2_stage2 = _ensure_list(assumed_r2.get("stage2", [])) return r2_stage1, r2_stage2, False else: r2_list = _ensure_list(assumed_r2) return r2_list, r2_list, True
def _convert_r2_to_cs_list( r2_list: List[float], r2_type: str, prevalence: float ) -> List[float]: """按类型把 R² 转换为 Cox–Snell 列表。""" if r2_type.lower() in ("cs", "coxsnell", "cox-snell"): return r2_list elif r2_type.lower() in ("nag", "nagelkerke"): return [nagelkerke_to_coxsnell(r2, prevalence) for r2 in r2_list] else: raise ValueError("r2_type 必须是 'cs' 或 'nagelkerke'。")
def evaluate_two_stage_models( n_healthy: int, n_bph: int, n_cancer: int, p_stage1: int, p_stage2: int, assumed_r2: Union[float, List[float], Dict[str, Union[float, List[float]]]], r2_type: str = "cs", target_shrinkage: float = 0.90, target_delta_r2: float = 0.05, target_delta_pi: float = 0.05, z_value: float = 1.96, ) -> Dict[str, Any]: """ 两阶段机器学习/回归预测模型样本量充分性评估(Riley 2020 框架) - 阶段1:健康 vs 异常(BPH + CA) - 阶段2:BPH vs CA(在异常者中) 同时评估三条常用标准: 1) 目标收缩因子 S ≥ target_shrinkage(默认 0.90) 2) 表观与校正后 R² 的差 ΔR² ≤ target_delta_r2(默认 0.05) 3) 总体风险(结局率)π 的 95% CI 半宽度 ≤ target_delta_pi(默认 0.05)
参数 - assumed_r2: 可为 · 标量/列表:两阶段共用同一组 R² · 字典:{'stage1': 标量/列表, 'stage2': 标量/列表} - r2_type: 'cs'(Cox–Snell)或 'nagelkerke' """ for x in [n_healthy, n_bph, n_cancer, p_stage1, p_stage2]: if not isinstance(x, (int, np.integer)) or x <= 0: raise ValueError("所有样本量与参数数必须为正整数。") if r2_type.lower() not in ("cs", "coxsnell", "cox-snell", "nag", "nagelkerke"): raise ValueError("r2_type 必须是 'cs' 或 'nagelkerke'。")
n_stage1 = int(n_healthy + n_bph + n_cancer) n_stage2 = int(n_bph + n_cancer) n_abnormal = int(n_bph + n_cancer)
pi_stage1 = n_abnormal / n_stage1 pi_stage2 = n_cancer / n_stage2
r2_s1_raw, r2_s2_raw, pairwise_same = _normalize_assumed_r2_input(assumed_r2) r2_s1_cs_list = _convert_r2_to_cs_list(r2_s1_raw, r2_type, pi_stage1) r2_s2_cs_list = _convert_r2_to_cs_list(r2_s2_raw, r2_type, pi_stage2)
print("\n=== 两阶段机器学习预测模型样本量充分性评估 (Riley 2020 框架) ===\n")
print("【第一阶段】健康 vs 异常 (BPH + CA)") print(f" - 样本量: 健康={n_healthy}, 异常={n_abnormal}, 总={n_stage1}") print(f" - 结局率(异常率) π₁ = {pi_stage1:.3f}") print(f" - 模型参数数 p₁ = {p_stage1}") print(f" - R² 类型: {'Cox–Snell' if r2_type.lower() in ('cs','coxsnell','cox-snell') else 'Nagelkerke (已换算为 Cox–Snell 用于计算)'}")
stage1_items = [] for r2 in r2_s1_cs_list: if not (0.0 < r2 < 1.0): print(f" - R²_cs = {r2:.2f}: 无效 (应在 0~1 之间)") continue s = shrinkage_from_n_p_r2cs(n_stage1, p_stage1, r2) delta_r2 = expected_delta_r2_cs(n_stage1, p_stage1, r2) chi_sq = lr_chi_square_from_r2_cs(n_stage1, r2) p_max_for_targetS = chi_sq * (1.0 - target_shrinkage)
n_req_S = required_n_for_target_shrinkage(p_stage1, r2, target_shrinkage) n_req_dR2 = required_n_for_delta_r2(p_stage1, r2, target_delta_r2)
print(f" - R²_cs = {r2:.2f}: S = {s:.3f} -> {_classify_shrinkage(s)}") print(f" ΔR²(表观-校正) ≈ {delta_r2:.3f} -> {'通过' if delta_r2 <= target_delta_r2 else '不通过'} (阈值 {target_delta_r2})") print(f" 建议: 若追求 S≥{target_shrinkage:.2f},当前 R² 下 p≤{p_max_for_targetS:.1f};或所需 n≈{np.ceil(n_req_S):.0f}") print(f" 若追求 ΔR²≤{target_delta_r2:.2f},所需 n≈{np.ceil(n_req_dR2):.0f}")
stage1_items.append({ "r2_cs": r2, "S": s, "delta_r2": delta_r2, "chi_sq": chi_sq, "p_max_for_targetS": p_max_for_targetS, "n_required_for_S": n_req_S, "n_required_for_deltaR2": n_req_dR2, })
hw1 = halfwidth_prevalence_ci(n_stage1, pi_stage1, z=z_value) n_req_pi1 = required_n_for_prevalence_precision(pi_stage1, target_delta_pi, z=z_value) print(f" - 总体风险(异常率)精度: 95% CI 半宽度 ≈ {hw1:.3f} -> {'通过' if hw1 <= target_delta_pi else '不通过'} (阈值 {target_delta_pi})") print(f" 所需 n 以满足半宽度 ≤ {target_delta_pi:.2f}: 约 {np.ceil(n_req_pi1):.0f}")
print("\n【第二阶段】前列腺增生 (BPH) vs 前列腺癌 (CA)") print(f" - 样本量: BPH={n_bph}, 癌={n_cancer}, 总={n_stage2}") print(f" - 结局率(癌症率) π₂ = {pi_stage2:.3f}") print(f" - 模型参数数 p₂ = {p_stage2}") print(f" - R² 类型: {'Cox–Snell' if r2_type.lower() in ('cs','coxsnell','cox-snell') else 'Nagelkerke (已换算为 Cox–Snell 用于计算)'}")
stage2_items = [] for r2 in r2_s2_cs_list: if not (0.0 < r2 < 1.0): print(f" - R²_cs = {r2:.2f}: 无效 (应在 0~1 之间)") continue s = shrinkage_from_n_p_r2cs(n_stage2, p_stage2, r2) delta_r2 = expected_delta_r2_cs(n_stage2, p_stage2, r2) chi_sq = lr_chi_square_from_r2_cs(n_stage2, r2) p_max_for_targetS = chi_sq * (1.0 - target_shrinkage)
n_req_S = required_n_for_target_shrinkage(p_stage2, r2, target_shrinkage) n_req_dR2 = required_n_for_delta_r2(p_stage2, r2, target_delta_r2)
print(f" - R²_cs = {r2:.2f}: S = {s:.3f} -> {_classify_shrinkage(s)}") print(f" ΔR²(表观-校正) ≈ {delta_r2:.3f} -> {'通过' if delta_r2 <= target_delta_r2 else '不通过'} (阈值 {target_delta_r2})") print(f" 建议: 若追求 S≥{target_shrinkage:.2f},当前 R² 下 p≤{p_max_for_targetS:.1f};或所需 n≈{np.ceil(n_req_S):.0f}") print(f" 若追求 ΔR²≤{target_delta_r2:.2f},所需 n≈{np.ceil(n_req_dR2):.0f}")
stage2_items.append({ "r2_cs": r2, "S": s, "delta_r2": delta_r2, "chi_sq": chi_sq, "p_max_for_targetS": p_max_for_targetS, "n_required_for_S": n_req_S, "n_required_for_deltaR2": n_req_dR2, })
hw2 = halfwidth_prevalence_ci(n_stage2, pi_stage2, z=z_value) n_req_pi2 = required_n_for_prevalence_precision(pi_stage2, target_delta_pi, z=z_value) print(f" - 总体风险(癌症率)精度: 95% CI 半宽度 ≈ {hw2:.3f} -> {'通过' if hw2 <= target_delta_pi else '不通过'} (阈值 {target_delta_pi})") print(f" 所需 n 以满足半宽度 ≤ {target_delta_pi:.2f}: 约 {np.ceil(n_req_pi2):.0f}")
print("\n=== 综合评估 ===") if pairwise_same and len(stage1_items) == len(stage2_items) and len(stage1_items) > 0: for i, (it1, it2) in enumerate(zip(stage1_items, stage2_items)): r2_label = f"R²_cs = {it1['r2_cs']:.2f}" s1, s2 = it1["S"], it2["S"] overall_min = min(s1, s2) worst_stage = "第一阶段" if s1 < s2 else "第二阶段" judgment = ( "良好 (过拟合风险低)" if overall_min >= 0.90 else "可接受 (轻度风险)" if overall_min >= 0.85 else "有风险 (需增加样本或减少变量)" ) print(f"{r2_label} -> 最低 S ≈ {overall_min:.3f} (瓶颈: {worst_stage})") print(f" -> 结论: {judgment}") else: print("两阶段使用了不同的 R² 场景或数量,已分别汇报各自结果;不做配对综合判定。")
print("\n=== 结束 ===\n")
return { "stage1": { "n": n_stage1, "p": p_stage1, "prevalence": pi_stage1, "items": stage1_items, "halfwidth_pi": hw1, "n_required_for_pi_precision": n_req_pi1, }, "stage2": { "n": n_stage2, "p": p_stage2, "prevalence": pi_stage2, "items": stage2_items, "halfwidth_pi": hw2, "n_required_for_pi_precision": n_req_pi2, }, "pairwise_same_r2": pairwise_same, "targets": { "shrinkage": target_shrinkage, "delta_r2": target_delta_r2, "delta_pi": target_delta_pi, "z_value": z_value, "r2_type_input": r2_type, } }
if __name__ == "__main__": evaluate_two_stage_models( n_healthy=253, n_bph=215, n_cancer=181, p_stage1=8, p_stage2=8, assumed_r2=[0.15, 0.25, 0.35], r2_type="cs", target_shrinkage=0.90, target_delta_r2=0.05, target_delta_pi=0.05, z_value=1.96, )
|